Moving objects with autonomous robots is a wide topic that includes single-arm pick-and-place tasks, object regrasping, object passing between two or more arms in the air or using support surfaces such as tables and similar. Each task has been extensively studied and many planning solutions are already present in the literature. In this letter, we present a planning scheme which, based on the use of pre-defined elementary manipulation skills, aims to unify solutions which are usually obtained by means of different planning strategies rooted on hard-coded behaviors. Both robotic manipulators and environment fixed support surfaces are treated as end-effectors of movable and non-movable types, respectively. The task of the robot can thus be broken down into elementary building blocks, which are end-effector manipulation skills, that are then planned at the kinematic level. Feasibility is ensured by propagating unforeseen low-level failures at the higher level and by synthesizing different behaviors. The validity of the proposed solution is shown via experiments on a bimanual robot setup and in simulations involving a more complex setup similar to an assembly line.

On the Problem of Moving Objects With Autonomous Robots: A Unifying High-Level Planning Approach

MARINO, HAMAL;FERRATI, MIRKO;SETTIMI, ALESSANDRO;GABICCINI, MARCO
2016-01-01

Abstract

Moving objects with autonomous robots is a wide topic that includes single-arm pick-and-place tasks, object regrasping, object passing between two or more arms in the air or using support surfaces such as tables and similar. Each task has been extensively studied and many planning solutions are already present in the literature. In this letter, we present a planning scheme which, based on the use of pre-defined elementary manipulation skills, aims to unify solutions which are usually obtained by means of different planning strategies rooted on hard-coded behaviors. Both robotic manipulators and environment fixed support surfaces are treated as end-effectors of movable and non-movable types, respectively. The task of the robot can thus be broken down into elementary building blocks, which are end-effector manipulation skills, that are then planned at the kinematic level. Feasibility is ensured by propagating unforeseen low-level failures at the higher level and by synthesizing different behaviors. The validity of the proposed solution is shown via experiments on a bimanual robot setup and in simulations involving a more complex setup similar to an assembly line.
2016
Marino, Hamal; Ferrati, Mirko; Settimi, Alessandro; Rosales, Carlos; Gabiccini, Marco
File in questo prodotto:
File Dimensione Formato  
07384694.pdf

solo utenti autorizzati

Descrizione: Articolo principale
Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.15 MB
Formato Adobe PDF
1.15 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/822888
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? ND
social impact