This work deals with the power allocation problem in a multipoint-to-multipoint network, which is heterogenous in the sense that each transmit and receiver pair can arbitrarily choose whether to selfishly maximize its own rate or energy efficiency. This is achieved by modeling the transmit and receiver pairs as rational players that engage in a non-cooperative game in which the utility function changes according to each player's nature. The underlying game is reformulated as a quasi variational inequality (QVI) problem using convex fractional program theory. The equivalence between the QVI and the non-cooperative game provides us with all the mathematical tools to study the uniqueness of its Nash equilibrium (NE) points and to derive novel algorithms that allow the network to converge to these points in an iterative manner both with and without the need for a centralized processing. A small-cell network is considered as a possible case study of this heterogeneous scenario. Numerical results are used to validate the proposed solutions in different operating conditions.
Power Control in Networks With Heterogeneous Users: A Quasi-Variational Inequality Approach
Sanguinetti, Luca
;Bacci, Giacomo;
2015-01-01
Abstract
This work deals with the power allocation problem in a multipoint-to-multipoint network, which is heterogenous in the sense that each transmit and receiver pair can arbitrarily choose whether to selfishly maximize its own rate or energy efficiency. This is achieved by modeling the transmit and receiver pairs as rational players that engage in a non-cooperative game in which the utility function changes according to each player's nature. The underlying game is reformulated as a quasi variational inequality (QVI) problem using convex fractional program theory. The equivalence between the QVI and the non-cooperative game provides us with all the mathematical tools to study the uniqueness of its Nash equilibrium (NE) points and to derive novel algorithms that allow the network to converge to these points in an iterative manner both with and without the need for a centralized processing. A small-cell network is considered as a possible case study of this heterogeneous scenario. Numerical results are used to validate the proposed solutions in different operating conditions.File | Dimensione | Formato | |
---|---|---|---|
07145476.pdf
solo utenti autorizzati
Tipologia:
Versione finale editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
3.34 MB
Formato
Adobe PDF
|
3.34 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Postprint_IEEE.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
472.49 kB
Formato
Adobe PDF
|
472.49 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.