Carbonic anhydrase II (CAII) is a zinc-containing metalloenzyme whose aberrant activity is associated with various diseases such as glaucoma, osteoporosis, and different types of tumors; therefore, the development of CAII inhibitors, which can represent promising therapeutic agents for the treatment of these pathologies, is a current topic in medicinal chemistry. Molecular docking is a commonly used tool in structure-based drug design of enzyme inhibitors. However, there is still a need for improving docking reliability, especially in terms of scoring functions, since the complex pattern of energetic contributions driving ligand⁻protein binding cannot be properly described by mathematical functions only including approximated energetic terms. Here we report a novel CAII-specific fingerprint-based (IFP) scoring function developed according to the ligand⁻protein interactions detected in the CAII-inhibitor co-crystal structures of the most potent CAII ligands. Our IFP scoring function outperformed the ability of Autodock4 scoring function to identify native-like docking poses of CAII inhibitors and thus allowed a considerable improvement of docking reliability. Moreover, the ligand⁻protein interaction fingerprints showed a useful application in the binding mode analysis of structurally diverse CAII ligands.

Development of a Fingerprint-Based Scoring Function for the Prediction of the Binding Mode of Carbonic Anhydrase II Inhibitors

Poli, Giulio;Jha, Vibhu;Martinelli, Adriano;Tuccinardi, Tiziano
2018-01-01

Abstract

Carbonic anhydrase II (CAII) is a zinc-containing metalloenzyme whose aberrant activity is associated with various diseases such as glaucoma, osteoporosis, and different types of tumors; therefore, the development of CAII inhibitors, which can represent promising therapeutic agents for the treatment of these pathologies, is a current topic in medicinal chemistry. Molecular docking is a commonly used tool in structure-based drug design of enzyme inhibitors. However, there is still a need for improving docking reliability, especially in terms of scoring functions, since the complex pattern of energetic contributions driving ligand⁻protein binding cannot be properly described by mathematical functions only including approximated energetic terms. Here we report a novel CAII-specific fingerprint-based (IFP) scoring function developed according to the ligand⁻protein interactions detected in the CAII-inhibitor co-crystal structures of the most potent CAII ligands. Our IFP scoring function outperformed the ability of Autodock4 scoring function to identify native-like docking poses of CAII inhibitors and thus allowed a considerable improvement of docking reliability. Moreover, the ligand⁻protein interaction fingerprints showed a useful application in the binding mode analysis of structurally diverse CAII ligands.
2018
Poli, Giulio; Jha, Vibhu; Martinelli, Adriano; Supuran, Claudiu T; Tuccinardi, Tiziano
File in questo prodotto:
File Dimensione Formato  
2018_10.pdf

accesso aperto

Descrizione: reprint
Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 2.55 MB
Formato Adobe PDF
2.55 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/944079
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 9
social impact