In recent years, a clear trend toward simplification emerged in the development of robotic hands. The use of soft robotic approaches has been a useful tool in this prospective, enabling complexity reduction by embodying part of grasping intelligence in the hand mechanical structure. Several hand prototypes designed according to such principles have accomplished good results in terms of grasping simplicity, robustness, and reliability. Among them, the Pisa/IIT SoftHand demonstrated the feasibility of a large variety of grasping tasks, by means of only one actuator and an opportunely designed tendon-driven differential mechanism. However, the use of a single degree of actuation prevents the execution of more complex tasks, like fine preshaping of fingers and in-hand manipulation. While possible in theory, simply doubling the Pisa/IIT SoftHand actuation system has several disadvantages, e.g., in terms of space and mechanical complexity. To overcome these limitations, we propose a novel design framework for tendon-driven mechanisms, in which the main idea is to turn transmission friction from a disturbance into a design tool. In this way, the degrees of actuation (DoAs) can be doubled with little additional complexity. By leveraging on this idea, we design a novel robotic hand, the Pisa/IIT SoftHand 2. We present here its design, modeling, control, and experimental validation. The hand demonstrates that by opportunely combining only two DoAs with hand softness, a large variety of grasping and manipulation tasks can be performed, only relying on the intelligence embodied in the mechanism. Examples include rotating objects with different shapes, opening a jar, and pouring coffee from a glass.

Toward Dexterous Manipulation with Augmented Adaptive Synergies: The Pisa/IIT SoftHand 2

Grioli G.;Catalano M. G.;Bicchi A.
2018-01-01

Abstract

In recent years, a clear trend toward simplification emerged in the development of robotic hands. The use of soft robotic approaches has been a useful tool in this prospective, enabling complexity reduction by embodying part of grasping intelligence in the hand mechanical structure. Several hand prototypes designed according to such principles have accomplished good results in terms of grasping simplicity, robustness, and reliability. Among them, the Pisa/IIT SoftHand demonstrated the feasibility of a large variety of grasping tasks, by means of only one actuator and an opportunely designed tendon-driven differential mechanism. However, the use of a single degree of actuation prevents the execution of more complex tasks, like fine preshaping of fingers and in-hand manipulation. While possible in theory, simply doubling the Pisa/IIT SoftHand actuation system has several disadvantages, e.g., in terms of space and mechanical complexity. To overcome these limitations, we propose a novel design framework for tendon-driven mechanisms, in which the main idea is to turn transmission friction from a disturbance into a design tool. In this way, the degrees of actuation (DoAs) can be doubled with little additional complexity. By leveraging on this idea, we design a novel robotic hand, the Pisa/IIT SoftHand 2. We present here its design, modeling, control, and experimental validation. The hand demonstrates that by opportunely combining only two DoAs with hand softness, a large variety of grasping and manipulation tasks can be performed, only relying on the intelligence embodied in the mechanism. Examples include rotating objects with different shapes, opening a jar, and pouring coffee from a glass.
2018
Santina, C. D.; Piazza, C.; Grioli, G.; Catalano, M. G.; Bicchi, A.
File in questo prodotto:
File Dimensione Formato  
softhand2_tro-ilovepdf-compressed.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.09 MB
Formato Adobe PDF
2.09 MB Adobe PDF Visualizza/Apri
08373731.pdf

solo utenti autorizzati

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 8.41 MB
Formato Adobe PDF
8.41 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/995605
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 115
  • ???jsp.display-item.citation.isi??? 105
social impact