The proteolytic activity of the enzyme ADAMTS7 was recently shown to enhance the progression of atherosclerosis, in line with human genetic findings suggesting that ADAMTS7 has a role in the pathophysiology of coronary heart disease. Targeting the active site of ADAMTS7 with a small molecule inhibitor, therefore, has therapeutic potential. Here, we report the design and synthesis of a novel hydroxamate-based arylsulfonamide that is a potent and selective ADAMTS7 inhibitor. In silico studies guided the hit optimization process aiming to improve selectivity of the previously reported (non-selective) inhibitor EDV33. Our lead compound is a p-trifluoromethyl biphenyl sulfonamide, which displayed a 12-fold selectivity for ADAMTS7 (Ki = 9 nM) over ADAMTS5 (Ki = 110 nM) and an 8-fold increase in inhibition of ADAMTS7 compared to EDV33 (Ki = 70 nM). The substitutions switched selectivity and produced a new potent ADAMTS7 inhibitor that can be taken forward for further characterisation.Starting from the ADAMTS5/ADAMTS7 inhibitor EDV33, a structure-based optimization led to the lead compound 3a, with nanomolar activity against ADAMTS7 and good selectivity over ADAMTS5.

Design, synthesis and biological evaluation of arylsulfonamides as ADAMTS7 inhibitors

Cuffaro, Doretta
Primo
;
Bernardoni, Bianca Laura;Di Leo, Riccardo;Galati, Salvatore;Tuccinardi, Tiziano;Macchia, Marco;Rossello, Armando;Nuti, Elisa
Ultimo
2024-01-01

Abstract

The proteolytic activity of the enzyme ADAMTS7 was recently shown to enhance the progression of atherosclerosis, in line with human genetic findings suggesting that ADAMTS7 has a role in the pathophysiology of coronary heart disease. Targeting the active site of ADAMTS7 with a small molecule inhibitor, therefore, has therapeutic potential. Here, we report the design and synthesis of a novel hydroxamate-based arylsulfonamide that is a potent and selective ADAMTS7 inhibitor. In silico studies guided the hit optimization process aiming to improve selectivity of the previously reported (non-selective) inhibitor EDV33. Our lead compound is a p-trifluoromethyl biphenyl sulfonamide, which displayed a 12-fold selectivity for ADAMTS7 (Ki = 9 nM) over ADAMTS5 (Ki = 110 nM) and an 8-fold increase in inhibition of ADAMTS7 compared to EDV33 (Ki = 70 nM). The substitutions switched selectivity and produced a new potent ADAMTS7 inhibitor that can be taken forward for further characterisation.Starting from the ADAMTS5/ADAMTS7 inhibitor EDV33, a structure-based optimization led to the lead compound 3a, with nanomolar activity against ADAMTS7 and good selectivity over ADAMTS5.
2024
Cuffaro, Doretta; Burkhard, Tina; Bernardoni, Bianca Laura; Di Leo, Riccardo; Zhang, Xiaohan; Galati, Salvatore; Tuccinardi, Tiziano; Macchia, Marco; ...espandi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1260607
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact