Preserving bakery products is essential for ensuring quality, and there is growing interest in developing sustainable preservation techniques. Innovative compostable materials like PBS (Polybutylene Succinate), PBSA-CHT or Poly(butylene Succinate) blendend with chitosan), and Polylactic Acid (PLA) are being studied with the aim to reduce waste, lower greenhouse gas emissions, and promote biodiversity. Evaluating these materials for food packaging involves analyzing their gas permeability, as a modified atmosphere is often used to extend shelf life. Key factors include gas concentration, humidity, temperature, and pressure. To assess the performance of these new materials, a data collection system was developed using a WiFi enabled microcontroller with digital sensors for temperature, humidity, and pressure. This compact, battery-powered system can be placed inside packages, providing continuous data without compromising the package integrity. A validation protocol was also created to compare compostable films (PBSA, PBSA-CHT, PLA) with conventional materials (PET, PP). It includes three tests: the Bubble Test for micro holes, Water Vapor Retention, and Gas Composition Retention during shelf life. This non-destructive monitoring method enhances understanding of compostable films' properties, offering insights for developing effective, sustainable packaging solutions that could replace conventional polymers.

Analysis and evaluation of compostable and conventional films for packaging bakery goods in modified atmospheres with the use of Microcontroller Unit (MCU) and digital sensors

Marianelli, Andrea;Casu Pereira de Sousa, Bruno Augusto;Macaluso, Monica
;
Pieracci, Ylenia;Palla, Fabrizio;Guidi, Eleonora;Coltelli, Maria Beatrice;Zinnai, Angela
2025-01-01

Abstract

Preserving bakery products is essential for ensuring quality, and there is growing interest in developing sustainable preservation techniques. Innovative compostable materials like PBS (Polybutylene Succinate), PBSA-CHT or Poly(butylene Succinate) blendend with chitosan), and Polylactic Acid (PLA) are being studied with the aim to reduce waste, lower greenhouse gas emissions, and promote biodiversity. Evaluating these materials for food packaging involves analyzing their gas permeability, as a modified atmosphere is often used to extend shelf life. Key factors include gas concentration, humidity, temperature, and pressure. To assess the performance of these new materials, a data collection system was developed using a WiFi enabled microcontroller with digital sensors for temperature, humidity, and pressure. This compact, battery-powered system can be placed inside packages, providing continuous data without compromising the package integrity. A validation protocol was also created to compare compostable films (PBSA, PBSA-CHT, PLA) with conventional materials (PET, PP). It includes three tests: the Bubble Test for micro holes, Water Vapor Retention, and Gas Composition Retention during shelf life. This non-destructive monitoring method enhances understanding of compostable films' properties, offering insights for developing effective, sustainable packaging solutions that could replace conventional polymers.
2025
Marianelli, Andrea; Casu Pereira De Sousa, Bruno Augusto; Macaluso, Monica; Pieracci, Ylenia; Palla, Fabrizio; Verdini, Piero Giorgio; Guidi, Eleonora...espandi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1327811
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact