In modern robotics, actuators are crucial for achieving effective movement and ensuring robustness. Although different applications demand specific actuator qualities, an actuator with built-in compliance and high torque density is generally preferred. Recently, harmonic gearboxes have become widely used in robotics for actuation due to their zero-backlash, lightweight design, flexibility, and high torque density. However, the intricate and precise machining required for these gearboxes makes them economically unviable in some cases. This work presents the RM-Act, a novel Radial Modular Actuator that employs synchronous belts as a harmonic speed reducer. The RM-Act retains the advantages of the harmonic principle, making it a promising candidate for robotic actuation. This paper describes the novel actuation principle and its validation through a prototype, along with a model identification to define its characteristics. The actuator demonstrates a nominal torque density of 10.08 N·m/kg, indicating its potential for efficient robotic applications.
RM-Act: A Novel Modular Harmonic Actuator
Ramesh Krishnan Muttathil GopanunniPrimo
;Alok Ranjan
;Lorenzo Martignetti;Franco Angelini
;Manolo GarabiniUltimo
2025-01-01
Abstract
In modern robotics, actuators are crucial for achieving effective movement and ensuring robustness. Although different applications demand specific actuator qualities, an actuator with built-in compliance and high torque density is generally preferred. Recently, harmonic gearboxes have become widely used in robotics for actuation due to their zero-backlash, lightweight design, flexibility, and high torque density. However, the intricate and precise machining required for these gearboxes makes them economically unviable in some cases. This work presents the RM-Act, a novel Radial Modular Actuator that employs synchronous belts as a harmonic speed reducer. The RM-Act retains the advantages of the harmonic principle, making it a promising candidate for robotic actuation. This paper describes the novel actuation principle and its validation through a prototype, along with a model identification to define its characteristics. The actuator demonstrates a nominal torque density of 10.08 N·m/kg, indicating its potential for efficient robotic applications.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


