Some N-phenyl- (7a-10a) and N-benzyl-substituted (7b-10b) amido analogs of cyclooxygenase (COX-2) selective tricyclic non-steroidal anti-inflammatory drugs have been synthesized with the aim to obtain information on the structural requirements for the COX-inhibitory activity. Compounds 7-10 were tested in vitro for their inhibitory properties only towards COX-2 enzyme by measuring prostaglandin E2 (PGE2) production on activated J774.2 macrophages. Some of the new compounds (7a, 8a, 9a and 9b) showed a modest activity, with percentage inhibition values near 30% at a concentration of 10 microM. These data have been tentatively explained by a conformational study which indicates that at least the N-phenyl-substituted amides 7a-9a present steric hindrances which may prevent a good interaction with COX-2 active site.
Synthesis and COX2 inhibitory properties of N-Phenyl-and N-benzyl-substituted amides of 2-(4-methylsulfonylphenyl)cyclopent-1-ene-1-carboxylic acid and of their pyrazole, thiophene, and isoxazole analogs
RAPPOSELLI, SIMONA;LAPUCCI, ANNALINA;MINUTOLO, FILIPPO;ORLANDINI, ELISABETTA;ORTORE, GABRIELLA MARIA PIA;
2004-01-01
Abstract
Some N-phenyl- (7a-10a) and N-benzyl-substituted (7b-10b) amido analogs of cyclooxygenase (COX-2) selective tricyclic non-steroidal anti-inflammatory drugs have been synthesized with the aim to obtain information on the structural requirements for the COX-inhibitory activity. Compounds 7-10 were tested in vitro for their inhibitory properties only towards COX-2 enzyme by measuring prostaglandin E2 (PGE2) production on activated J774.2 macrophages. Some of the new compounds (7a, 8a, 9a and 9b) showed a modest activity, with percentage inhibition values near 30% at a concentration of 10 microM. These data have been tentatively explained by a conformational study which indicates that at least the N-phenyl-substituted amides 7a-9a present steric hindrances which may prevent a good interaction with COX-2 active site.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.