The aim of this study was to investigate some probiotic properties of 42 wild Lactobacillus plantarum strains isolated from different Italian foods of animal origin. The strains were first screened for their antibiotic resistance profile (chloramphenicol, erythromycin, gentamicin, and tetracycline), subsequently they were tested for their in vitro resistance to lysozyme (100 mg L-1), low pH (3.0, 2.5 and 2.0) and bile salts (0.3, 0.5 and 1.0 %). Moreover, agglutination property was studied (adhesion to Saccharomyces cerevisiae cells), as well as the presence of bsh and msa genes. The strains with the best characteristics were subjected to a further trial in order to evaluate their ability to survive to multiple stresses over time (lysozyme, low pH and bile salts) and the effect of these treatments on adhesion to yeast cells. All the strains were susceptible to chloramphenicol, erythromycin and gentamicin, while 6 strains were excluded from further evaluation because of their resistant phenotype against tetracycline. All the strains were able to grow in presence of lysozyme, as well as in MRS broth at pH 3.0. Only 4 strains showed a growth rate lower than 80 % when grown in MRS broth at pH 2.5, while a relevant growth rate decrease was observed after exposure to pH 2.0. Bile salts didn’t affect the viability of the L. plantarum cells. Twenty-one strains out of 33 tested strains were able to adhere to S. cerevisiae cells. Presence of both bsh and msa genes was detected in 6 strains. The strains resistant to all the stresses, positive to agglutinationwith S. cerevisiae and showing bsh and msa genes were selected for further evaluation and subjected to different stress treatments over time. The assessment of growth rates showed that exposure to lysozyme significantly increased low pH resistance in L. plantarum. This increase ranged from 2.35 to 15.57 %. The consequential lysozyme and low pH exposures didn’t affect the growth rate values after bile salts treatment, as well as the ability of the strains to adhere to yeast cells wasn’t modified by previous treatments (lysozyme, low pH and bile salts). The present work allows to increase knowledge about non starter lactic acid bacteria from Italian food products. The studied L. plantarum strains showed a good potential for their use as probiotic cultures. However, more in vivo tests are necessary to confirm this potentiality.

Preliminary evaluation of probiotic potential of Lactobacillus plantarum strains isolated from italian food products

TURCHI, BARBARA
Primo
;
MANCINI, SIMONE
Secondo
;
FRATINI, FILIPPO;PEDONESE, FRANCESCA;NUVOLONI, ROBERTA;BERTELLONI, FABRIZIO;EBANI, VALENTINA VIRGINIA
Penultimo
;
CERRI, DOMENICO
Ultimo
2013

Abstract

The aim of this study was to investigate some probiotic properties of 42 wild Lactobacillus plantarum strains isolated from different Italian foods of animal origin. The strains were first screened for their antibiotic resistance profile (chloramphenicol, erythromycin, gentamicin, and tetracycline), subsequently they were tested for their in vitro resistance to lysozyme (100 mg L-1), low pH (3.0, 2.5 and 2.0) and bile salts (0.3, 0.5 and 1.0 %). Moreover, agglutination property was studied (adhesion to Saccharomyces cerevisiae cells), as well as the presence of bsh and msa genes. The strains with the best characteristics were subjected to a further trial in order to evaluate their ability to survive to multiple stresses over time (lysozyme, low pH and bile salts) and the effect of these treatments on adhesion to yeast cells. All the strains were susceptible to chloramphenicol, erythromycin and gentamicin, while 6 strains were excluded from further evaluation because of their resistant phenotype against tetracycline. All the strains were able to grow in presence of lysozyme, as well as in MRS broth at pH 3.0. Only 4 strains showed a growth rate lower than 80 % when grown in MRS broth at pH 2.5, while a relevant growth rate decrease was observed after exposure to pH 2.0. Bile salts didn’t affect the viability of the L. plantarum cells. Twenty-one strains out of 33 tested strains were able to adhere to S. cerevisiae cells. Presence of both bsh and msa genes was detected in 6 strains. The strains resistant to all the stresses, positive to agglutinationwith S. cerevisiae and showing bsh and msa genes were selected for further evaluation and subjected to different stress treatments over time. The assessment of growth rates showed that exposure to lysozyme significantly increased low pH resistance in L. plantarum. This increase ranged from 2.35 to 15.57 %. The consequential lysozyme and low pH exposures didn’t affect the growth rate values after bile salts treatment, as well as the ability of the strains to adhere to yeast cells wasn’t modified by previous treatments (lysozyme, low pH and bile salts). The present work allows to increase knowledge about non starter lactic acid bacteria from Italian food products. The studied L. plantarum strains showed a good potential for their use as probiotic cultures. However, more in vivo tests are necessary to confirm this potentiality.
Turchi, Barbara; Mancini, Simone; Fratini, Filippo; Pedonese, Francesca; Nuvoloni, Roberta; Bertelloni, Fabrizio; Ebani, VALENTINA VIRGINIA; Cerri, Domenico
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/214219
Citazioni
  • ???jsp.display-item.citation.pmc??? 11
  • Scopus 57
  • ???jsp.display-item.citation.isi??? 57
social impact