Aggressive behavior and diffuse infiltrative growth are the main features of Glioblastoma multiforme (GBM), together with the high degree of resistance and recurrence. Evidence indicate that GBM-derived stem cells (GSCs), endowed with unlimited proliferative potential, play a critical role in tumor development and maintenance. Among the many signaling pathways involved in maintaining GSC stemness, tumorigenic potential, and anti-apoptotic properties, the PDK1/Akt pathway is a challenging target to develop new potential agents able to affect GBM resistance to chemotherapy. In an effort to find new PDK1/Akt inhibitors, we rationally designed and synthesized a small family of 2-oxindole derivatives. Among them, compound 3 inhibited PDK1 kinase and downstream effectors such as CHK1, GS3Kα and GS3Kβ, which contribute to GCS survival. Compound 3 appeared to be a good tool for studying the role of the PDK1/Akt pathway in GCS self-renewal and tumorigenicity, and might represent the starting point for the development of more potent and focused multi-target therapies for GBM

Design and synthesis of 2-oxindole based multi-targeted inhibitors of PDK1/Akt signaling pathway for the treatment of glioblastoma multiforme

SESTITO, SIMONA
Co-primo
;
NESI, GIULIA
Co-primo
;
DANIELE, SIMONA;MARTELLI, ALMA;DIGIACOMO, MARIA;BORGHINI, ALICE;PIETRA, DANIELE;CALDERONE, VINCENZO;LAPUCCI, ANNALINA;BRESCHI, MARIA CRISTINA;MACCHIA, MARCO;MARTINI, CLAUDIA
Penultimo
;
RAPPOSELLI, SIMONA
Ultimo
2015-01-01

Abstract

Aggressive behavior and diffuse infiltrative growth are the main features of Glioblastoma multiforme (GBM), together with the high degree of resistance and recurrence. Evidence indicate that GBM-derived stem cells (GSCs), endowed with unlimited proliferative potential, play a critical role in tumor development and maintenance. Among the many signaling pathways involved in maintaining GSC stemness, tumorigenic potential, and anti-apoptotic properties, the PDK1/Akt pathway is a challenging target to develop new potential agents able to affect GBM resistance to chemotherapy. In an effort to find new PDK1/Akt inhibitors, we rationally designed and synthesized a small family of 2-oxindole derivatives. Among them, compound 3 inhibited PDK1 kinase and downstream effectors such as CHK1, GS3Kα and GS3Kβ, which contribute to GCS survival. Compound 3 appeared to be a good tool for studying the role of the PDK1/Akt pathway in GCS self-renewal and tumorigenicity, and might represent the starting point for the development of more potent and focused multi-target therapies for GBM
2015
Sestito, Simona; Nesi, Giulia; Daniele, Simona; Martelli, Alma; Digiacomo, Maria; Borghini, Alice; Pietra, Daniele; Calderone, Vincenzo; Lapucci, Annalina; Falasca, Marco; Parrella, Paola; Notarangelo, Angelantonio; Breschi, MARIA CRISTINA; Macchia, Marco; Martini, Claudia; Rapposelli, Simona
File in questo prodotto:
File Dimensione Formato  
Ejmc Sestito et al 2015.pdf

solo utenti autorizzati

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.84 MB
Formato Adobe PDF
1.84 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Post print EJMC Sestito et al 2015.pdf

Open Access dal 01/12/2017

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 3.17 MB
Formato Adobe PDF
3.17 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/759342
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 34
social impact