This paper presents a cooperative and distributed control law for multiple Autonomous Underwater Vehicles (AUVs) executing a mission while meeting mutual communication constraints. Virtual couplings define interaction control forces between neighbouring vehicles. Moreover, the couplings are designed to enforce a desired vehicle-vehicle and vehicle-target spacing. The whole network is modelled in the passive, energy-based, port-Hamiltonian framework. Such framework allows to prove closed-loop stability using the whole system kinetic and virtual potential energy by constructing a suitable Lyapunov function. Furthermore, the robustness to communication delays is also demonstrated. Simulation results are given to illustrate the effectiveness of the proposed approach.

A Distributed, Passivity-Based Control of Autonomous Mobile Sensors in an Underwater Acoustic Network

Fabiani, Filippo;FENUCCI, DAVIDE;FABBRI, TOMMASO;CAITI, ANDREA
2016-01-01

Abstract

This paper presents a cooperative and distributed control law for multiple Autonomous Underwater Vehicles (AUVs) executing a mission while meeting mutual communication constraints. Virtual couplings define interaction control forces between neighbouring vehicles. Moreover, the couplings are designed to enforce a desired vehicle-vehicle and vehicle-target spacing. The whole network is modelled in the passive, energy-based, port-Hamiltonian framework. Such framework allows to prove closed-loop stability using the whole system kinetic and virtual potential energy by constructing a suitable Lyapunov function. Furthermore, the robustness to communication delays is also demonstrated. Simulation results are given to illustrate the effectiveness of the proposed approach.
File in questo prodotto:
File Dimensione Formato  
Fabiani_et_al_Trondheim16.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Versione finale editoriale
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 412.68 kB
Formato Adobe PDF
412.68 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/838769
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
social impact