Food Business Operators (FBOs) rely on laboratory analysis to ensure seafood traceability. DNA barcoding and Forensically Informative Nucleotide Sequencing may represent a support within self-checking programs finalized to suppliers’ qualification and products identity certification. The present study aimed at verifying the usefulness of a decisional procedure (decision tree) set up at the FishLab (Department of Veterinary Sciences, University of Pisa, Italy) for seafood species identification by DNA analysis, to cope with FBOs’ needs. The decision tree was applied to the analysis of 182 seafood (fish and molluscs) products, conferred to the FishLab by different FBOs between 2014 and 2015 as result of their self-checking activities. The analysis relied on a standard COI gene fragment eventually integrated by the analysis of alternative or supportive molecular targets (cytb and 16S rRNA). It also included a mini-DNA barcoding approach for processed products. Overall, 96.2% of the samples were unambiguously identified at species level using the elective target alone (92.4%) or a multitarget approach (3.8%). The lack of species identification (3.8%) was attributable to the absence of reference sequences or to the low resolution of the molecular targets. Nonetheless, all the molecular results were deemed adequate to evaluate the sample’s compliance to the label information. Noncompliances were highlighted in 18.1% of the products. The protocol was proven as an effective supportive tool for the seafood identity verification within the supply chain self-checking activities. In addition, a considerable fraud rate was confirmed and the species most frequently involved in substitution were pointed out.

DNA barcoding for the verification of supplier’s compliance in the seafood chain: how the lab can support companies in ensuring traceability

Lara, Tinacci
Primo
;
Alessandra, Guidi;Alice, Giusti;Andrea, Armani
Ultimo
2018-01-01

Abstract

Food Business Operators (FBOs) rely on laboratory analysis to ensure seafood traceability. DNA barcoding and Forensically Informative Nucleotide Sequencing may represent a support within self-checking programs finalized to suppliers’ qualification and products identity certification. The present study aimed at verifying the usefulness of a decisional procedure (decision tree) set up at the FishLab (Department of Veterinary Sciences, University of Pisa, Italy) for seafood species identification by DNA analysis, to cope with FBOs’ needs. The decision tree was applied to the analysis of 182 seafood (fish and molluscs) products, conferred to the FishLab by different FBOs between 2014 and 2015 as result of their self-checking activities. The analysis relied on a standard COI gene fragment eventually integrated by the analysis of alternative or supportive molecular targets (cytb and 16S rRNA). It also included a mini-DNA barcoding approach for processed products. Overall, 96.2% of the samples were unambiguously identified at species level using the elective target alone (92.4%) or a multitarget approach (3.8%). The lack of species identification (3.8%) was attributable to the absence of reference sequences or to the low resolution of the molecular targets. Nonetheless, all the molecular results were deemed adequate to evaluate the sample’s compliance to the label information. Noncompliances were highlighted in 18.1% of the products. The protocol was proven as an effective supportive tool for the seafood identity verification within the supply chain self-checking activities. In addition, a considerable fraud rate was confirmed and the species most frequently involved in substitution were pointed out.
2018
Tinacci, Lara; Guidi, Alessandra; Toto, Andrea; Guardone, Lisa; Giusti, Alice; D'Amico, Priscilla; Armani, Andrea
File in questo prodotto:
File Dimensione Formato  
6894-30704-1-RV1 16-03-18.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 264.58 kB
Formato Adobe PDF
264.58 kB Adobe PDF Visualizza/Apri
Pagepress article.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 830.91 kB
Formato Adobe PDF
830.91 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/946767
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 25
social impact