To face the demand for applications in which robots have to safely interact with humans and the environment, the research community developed new types of actuators with compliant characteristics. To embody compliance into the actuator, elastic elements with fixed or variable compliance can be used. Among the variable stiffness mechanisms, a popular approach is based on the agonistic-antagonistic (A-A) layout, where two prime movers are elastically connected to the output shaft of the actuator. Notwithstanding the conceptually simple realization of the A-A layout, one limitation is that, due to the nonlinear torque/deflection characteristic of the elastic transmissions and to the limited spring elongation, the stiffness range achievable at the output shaft reduces as the external torque increases. In this work, a novel layout, based on the A-A principle, is proposed to increase the torque/stiffness capability of the actuator. To achieve this result, we combine elastic transmissions with linear and nonlinear torque/deflection characteristics. The mathematical model of the new layout and a possible implementation are analyzed. Then, the design of a novel variable stiffness actuator is presented and experimental validations are shown to compare the new device with the benchmark.
Overcoming the Torque/Stiffness Range Tradeoff in Antagonistic Variable Stiffness Actuators
Mengacci R.;Garabini M.;Grioli G.;Catalano M.;Bicchi A.
2021-01-01
Abstract
To face the demand for applications in which robots have to safely interact with humans and the environment, the research community developed new types of actuators with compliant characteristics. To embody compliance into the actuator, elastic elements with fixed or variable compliance can be used. Among the variable stiffness mechanisms, a popular approach is based on the agonistic-antagonistic (A-A) layout, where two prime movers are elastically connected to the output shaft of the actuator. Notwithstanding the conceptually simple realization of the A-A layout, one limitation is that, due to the nonlinear torque/deflection characteristic of the elastic transmissions and to the limited spring elongation, the stiffness range achievable at the output shaft reduces as the external torque increases. In this work, a novel layout, based on the A-A principle, is proposed to increase the torque/stiffness capability of the actuator. To achieve this result, we combine elastic transmissions with linear and nonlinear torque/deflection characteristics. The mathematical model of the new layout and a possible implementation are analyzed. Then, the design of a novel variable stiffness actuator is presented and experimental validations are shown to compare the new device with the benchmark.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.