Recent technological developments have paved the way to the employment of Autonomous Underwater Vehicles (AUVs) for monitoring and exploration activities of marine environments. Traditionally, in information gathering scenarios for monitoring purposes, AUVs follow predefined paths that are not efficient in terms of information content and energy consumption. Informative Path Planning (IPP) represents a valid alternative, defining the path that maximises the gathered information. This work proposes a Genetic Path Planner (GPP), which consists in an IPP strategy based on a Genetic Algorithm, with the aim of generating a path that simultaneously maximises the information gathered and the coverage of the inspected area. The proposed approach has been tested offline for monitoring and inspection applications of Posidonia Oceanica (PO) in three different geographical areas. The a priori knowledge about the presence of PO, in probabilistic terms, has been modelled utilising a Gaussian Process (GP), trained on real marine data. The GP estimate has then been exploited to retrieve an information content of each position in the areas of interest. A comparison with other two IPP approaches has been carried out to assess the performance of the proposed algorithm.

Path planning for underwater information gathering based on genetic algorithms and data stochastic models

Bresciani M.;Ruscio F.;Tani S.;Peralta G.;Timperi A.;Caiti A.;Costanzi R.
2021-01-01

Abstract

Recent technological developments have paved the way to the employment of Autonomous Underwater Vehicles (AUVs) for monitoring and exploration activities of marine environments. Traditionally, in information gathering scenarios for monitoring purposes, AUVs follow predefined paths that are not efficient in terms of information content and energy consumption. Informative Path Planning (IPP) represents a valid alternative, defining the path that maximises the gathered information. This work proposes a Genetic Path Planner (GPP), which consists in an IPP strategy based on a Genetic Algorithm, with the aim of generating a path that simultaneously maximises the information gathered and the coverage of the inspected area. The proposed approach has been tested offline for monitoring and inspection applications of Posidonia Oceanica (PO) in three different geographical areas. The a priori knowledge about the presence of PO, in probabilistic terms, has been modelled utilising a Gaussian Process (GP), trained on real marine data. The GP estimate has then been exploited to retrieve an information content of each position in the areas of interest. A comparison with other two IPP approaches has been carried out to assess the performance of the proposed algorithm.
2021
Bresciani, M.; Ruscio, F.; Tani, S.; Peralta, G.; Timperi, A.; Guerrero-Font, E.; Bonin-Font, F.; Caiti, A.; Costanzi, R.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1110614
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 13
social impact